第12部分 (第1/4页)

行灾室餐耆�嗤���堑脑硕�媛梢餐耆�恢拢�饩褪恰坝畛剖睾恪薄�

假如一个粒子顺时针旋转,它的镜像粒子从镜中看起来就是逆时针旋转,但是这个旋转的所有定律都是相同的,因此,镜内镜外的粒子是宇称守恒的。按照诺特定理,与空间反射不变性对应的就是宇称守恒。

在某种意义上,我们可以把同一种粒子下的个体粒子理解成彼此互为镜像的。假设一个电子顺时针方向自旋,另一个电子逆时针方向自旋,一个电子就可以把另一个电子当成镜像中的自己,就像人通过镜子看自己一样。由此推断,根据宇称守恒理论,所有电子自身环境和镜像环境中都应该遵循同样的物理定律,其他粒子的情况也是如此。

很早就有人提出了牛顿定律具有镜像对称性。不过,以前科学家们提出的那些具有镜像对称的物理定律大多是宏观的,而宇称守恒则是针对组成宇宙间所有物质的最基本的粒子。如果物质最基本层面的对称能够成立,那么对称就成为宇宙物质的根本属性。

现代物理将物质间的相互作用力分为四种:引力、电磁力、强力和弱力。在强力、电磁力和引力作用的环境中,宇称守恒理论都得到了很好的验证:粒子在这三种环境下表现出了绝对的、无条件的对称。

在普通人眼中,对称是完美世界的保证;在物理学家眼中,宇称守恒如此合乎科学理想。于是,弱力环境中的宇称守恒虽然未经验证,也理所当然地被认为遵循宇称守恒规律。

20世纪50年代初,科学家们从宇宙射线里观察到两种新的介子:θ和τ。这两种介子的自旋、质量、寿命电荷等完全相同,很多人都认为它们是同一种粒子。但是,它们却具有不同的衰变模式,θ衰变时会产生两个π介子,τ则衰变成三个π介子,这说明它们遵循着不同的运动规律。

假使τ和θ是不同的粒子,它们怎么会具有一模一样的质量和寿命呢?而如果承认它们是同一种粒子,又怎么会具有完全不一样的运动规律呢?

为了解决这一问题,物理学界曾提出过各种不同的想法,但都没有成功。物理学家们都小心翼翼地绕开了“宇称不守恒”这个可能。当时的物理学家们不能想象:一个电子和另一个电子的运动规律不一样吗?或者一个介子和另一个介子的运动规律不一样吗?

1956年,李政道和杨振宁两位物理学家在深入细致地研究了各种因素之后,大胆地断言:θ和τ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同。通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!即“θ…τ”粒子在弱相互作用下是宇称不守恒的。

类比说明:假设有两辆互为镜像的汽车,汽车A的司机坐在左前方座位上,油门踏板在他的右脚附近;汽车B的司机则坐在右前方座位上,油门踏板在他的左脚附近。

汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板,使得汽车以一定的速度向前驶去;汽车B的司机也做完全一样的动作,只是左右交换一下,他反时针方向开动点火钥匙,用左脚踩油门踏板,并且使踏板的倾斜程度与A保持一致。现在,汽车B将会如何运动呢?

大多数人会认为,两辆汽车应该以完全一样的速度向前行驶。遗憾的是,在粒子世界里,汽车B将以完全不同的速度行驶,方向也未必一致!粒子世界就是这样不可思议地展现了宇称不守恒。

最初,“θ…τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,吴健雄用两套实验装置观测钴60的衰变,她在极低温下用强磁场把一套装置中的钴60原子核自旋方向转向左旋,把另一套装置中的钴60原子核自旋方向转向右旋,这两套装置中的钴60互为镜像。

实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称,证实了弱相互作用中的宇称不守恒。

从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。不过,究竟粒子为什么在弱相互作用下会出现宇称不守恒呢?根本原因至今仍然是个谜。

结论:宇称不守恒说明弱相互作用的镜像不对称。

3.粒子非对

根据大爆炸宇宙创生理论,基本粒子是从能量中成对

本章未完,点击下一页继续阅读。