第28部分 (第1/4页)

即这个结论是一样的。

同样以B点观察,以B0和B1的连线对应的参照系为基准漂移参照系。B观察到A的速度为u=Csinθ

图六:同源运动漂移图

图六左边为:A和B同源时候,A观察的运动漂移图;右边为:A和B同源时候,B观察的运动漂移图(本图为四维时空漂移图,PA0 、PA1、 PB0 、PB1平面代表的是三维立体空间)。

第二种是A和B不同源时:

A和B位于静元宇宙PA0时,A的位置为A0,B的位置为B0,A和B之间的位置为A0B0。

实际观察和同源一样,只是原先的距离不是0,等于将B点移动到B´就能得出与同源一样的结论,即u=S/T= Csinθ。

图七:不同源运动漂移图

图七左边为:A和B不同源时候,A观察的运动漂移图;右边为:A和B不同源时候,B观察的运动漂移图(本图为四维时空漂移图,PA0 、PA1、 PB0 、PB1平面代表的是三维立体空间)。

结论:任何物体的运动可以看成同源运动,物体之间真实的运动是处于万维宇宙之间的运动,物体观察其他物体的运动速度时存在观察失真,导致观察的速度与漂移方向有关,这个速度取决物体自身的漂移速度,在物体对奇点漂移速度为C的时候,速度为Csinθ,这个速度是相互的速度,即A观察B的速度和B观察A的速度一样。

5.长度缩短

假设B物体内含的空间有一个物体,它的长度为LB,那么在A的基准漂移参照系中,LA就不等于LB长度,LA=LBcosθ,根据三角函数原理,cosθ=(1…sin2θ)1/2,得出:LA= LB 。

假设A物体内含的空间有一个物体,它的长度为LA,那么在B的基准漂移参照系中,LB就不等于LA长度,LB=LAcosθ,同样得出:

LB= LA 。

这就是漂移理论得出的长度缩短结论。

图八左边为:A观察B物体的长度缩短图;右边为:B观察A物体的长度缩短图A和B不同源时候,B观察的运动漂移图(本图为四维时空漂移图,PA0 、PA1、 PB0 、PB1平面代表的是三维立体空间,LA和LB是虚拟长度,实际上只是为了理解画的,真正的物体长度应该处于平面内)。

图八:长度收缩图

需要指出的是:

本文认为长度缩短的公式与狭义相对论一样,但是长度方向不同。本文的长度是沿着奇点漂移运动的长度,不是其他方向的长度,只有与自身的漂游运动方向一致的长度,才能出现缩短现象,其他方向必须要折算成奇点运动方向,如果与奇点运动方向垂直,那么就不能出现缩短。

()

这与狭义相对论所说的运动方向不一样,狭义相对论所说的运动方向长度收缩是推论失误,它本身与视觉旋转理论存在矛盾。

结论:通常物体的运动速度很小,观察很近才出现这样的模糊理解,真实的长度缩短就是与自身奇点漂移运动方向的长度缩短。

6.时间膨胀

根据宇宙量子论,时间是单元宇宙物体的空间变动率,即A0A1和 B0B1代表A和B的静元物体空间变动数,C为空间变动速度。

从A的基准漂移参照系观察,物体A是从A0点运动到A1,它经历的时间为TA,TA=A0A1/C。

从B的基准漂移参照系观察,物体B是从B0点运动到B1,它经历的时间为TB,TB= B0B1/C。

由于A和B是同源漂移,A0A1=B0B1,A和B对奇点的漂移速度都是C,因此,TA=TB。

虽然就整个单元宇宙看TA=TB,但是就A和B各自的基准漂移参照系来看,时间是不一样的。

从A的基准漂移参照系观察B,它观察到B的空间变动速度不C,是C的映射速度,VB=Ccosθ。

因此测量的时间TB=A0A1/VB=A0A1/Ccosθ=TA/ cosθ=TA/ 。

从B的基准漂移参照系观察A,它观察到A的空间变动速度不C,是C的映射速度,VA=Ccosθ。

因此测量的时间TA=B0B1/VB=B0B1/Ccosθ=TB/ cosθ=TB/ 。

当物体A

本章未完,点击下一页继续阅读。